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Abstract

We derive an asymptotic expression for the variance
of the number of 2-protected nodes (neither leaves
nor parents of leaves) in a binary trie. In an unbiased
trie on n leaves we find, for example, that the vari-
ance is approximately .934n plus small fluctuations
(also of order n); but our result covers the general
(biased) case as well. Our proof relies on the asymp-
totic similarities between a trie and its Poissonized
counterpart, whose behavior we glean via the Mellin
transform and singularity analysis.

Keywords: Analysis of algorithms, Mellin trans-
form, Poissonization, retrieval trees, combinatorics
on words.

Mathematical subject classification: 05C05,
60C05, 68W32, 68W40.

1 Introduction

A node in a tree is said to be k-protected if its distance
from every leaf (measured by the number of edges)
is at least k. Every node in a tree is 0-protected, for
instance, while the 1-protected nodes are precisely
those nodes that are not leaves. In this paper we
restrict our attention to 2-protected nodes, i.e., nodes
which are neither a leaf not a parent of a leaf.

In recent years a substantial body of literature
has been published about exact enumeration and/or
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asymptotic expectation of the number of 2-protected
nodes in various types of tree models.

• Cheon and Shapiro [1] proved that the expected
proportion of 2-protected nodes in a planar tree
approaches 1/6, as the total number of leaves in
the tree increases. They also show that the aver-
age proportion of 2-protected nodes in Motzkin
trees (i.e., those trees in which each node has 0,
1, or 2 children) approaches 10/27; in ternary
trees (each node has 0 or 3 children), the aver-
age proportion approaches 1/81. They have a
general program of analysis that extends—with
very little modification—to many similar types
of trees.

• Mansour [9] established that, in k-ary trees (i.e.,
in which nodes always have 0 or k offspring) that
have n internal nodes, the average proportion of
2-protected nodes approaches n/kk, as n→∞.

• Du and Prodinger [3] deduced that the expected
number of 2-protected nodes in an unbiased
digital search tree of size n is asymptotically
(n)(.307 . . .) plus n times a tiny periodic func-
tion of log n (i.e., this function is bounded, with
a small maximum amplitude).

• Mahmoud and Ward [8] derived an expression for
the number of 2-protected nodes in binary search
trees corresponding to uniformly-chosen permu-
tations. They also calculated exact expressions
for the kth moment of the number of 2-protected
nodes in a BST, using a method that extends to
any nonnegative integer k.

• Gaither, Homma, Sellke and Ward [6] discov-
ered the expected number of 2-protected nodes
in both tries and suffix trees. The first-order
term proved to be the same in both classes of
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tree structures, and in the uniform case was ap-
proximately (n)(.8034 . . .).

1.1 Motivation

Retrieval trees—henceforth referred to as tries—
are one of the most prolific data structures. They
were introduced more than 50 years ago by de la
Briandais [2] and Fredkin [5]. The precise analysis
of the asymptotic characteristic of trie parameters
continues to be a topic of broad interest. See, for
instance, the recent survey [10], and the many ref-
erences contained therein, for a thorough analysis of
the profile (number of nodes at a given level) of tries.

The variance of the number of 2-protected nodes
is of interest because it allows us to determine (in
a forthcoming report) the asymptotic distribution of
the number of 2-protected nodes in tries. The method
of solution is also of interest because we are able to
derive exact generating functions for the quantities
under consideration. A distributional result, in turn,
could lead to results which generalize to other kinds
of trees, e.g., to the analogous distribution in suffix
trees, but attaining the variance is a crucial aspect of
this larger analysis.

Furthermore, our result about the variance is (to
the best of our knowledge) among the first such re-
sults about the number of 2-protected nodes in any
tree model. (Mahmoud and Ward [8] paper is an
exception, since it yields a method for all moments
of the number of 2-protected nodes in binary search
trees.)

Two-protected nodes are an emerging parameter
of interest, and they have some practical motivations
as well. E.g., in a security model with trie struc-
ture, a 2-protected node may be taken to represent
an entity that has at least two buffers between itself
and a vulnerable point; protection is, in this context,
highly desirable. In a social-network setting, how-
ever, the reverse is true. The classic social-network
tree-paradigm uses nodes to represent users on the
site, and uses parent-child relationship to represent
the act of recruiting a new user to the network. A
2-protected node therefore can be viewed as one who
has recruited in the past (i.e., has children and grand-
children), but has not brought anyone new to the net-

work for awhile (i.e., none of its children are them-
selves leaves). In the former case, a high variance is
a definite danger; in the latter it might be viewed as
advantageous.

As one additional motivation, we emphasize that
the (more general) concept of k-protected nodes in
tree models for k > 2 seems to invite new investi-
gations in all tree models, as this parameter has not
yet received much attention in the combinatorial or
asymptotic analysis literature.

2 Definitions

We work with binary strings, i.e., those with letters
from A = {a, b}. We use A∗ to denote the set of
all strings of finite length (including ε, the “empty
string” of length 0).

We use a Bernoulli(p) model, in which the letters
within a string are always generated independently,
and in which the collection of strings is independent
too, i.e., there is no dependence between any collec-
tion of strings inserted in a trie. If a string S consists
of exactly j occurrences of letter a and k occurrences
of letter b, then the inherent probability of a string
having prefix S is P (S) = pjqk. We always consider
a finite number n of strings inserted in a trie, and
thus, with probability 1, each string will have a pre-
fix of finite length that distinguishes it from the other
n − 1 strings in the collection from which the trie is
built. An example collection of strings is shown in a
trie structure in Figure 1.

We build a trie Tn over n strings, say S1, . . . , Sn,
according to a mechanism to be described in Sec-
tion 2.1. We then define

Tn := T (Tn)

to be the number of 2-protected nodes in the trie
Tn. Our ultimate quantity of interest is the variance
Var(Tn).

We will do most of our work in a Poissonized
model. To this end we define TNz to be a trie built
on Nz random strings, where Nz is Poisson with pa-
rameter z; and then let

TNz
:= T (TNz )

2
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S1 = 0110001101 . . .
S2 = 1111110101 . . .
S3 = 0111010000 . . .
S4 = 1100101100 . . .
S5 = 1100010000 . . .
S6 = 0000010010 . . .
S7 = 1100001001 . . .
S8 = 0010111100 . . .

S9 = 1011111000 . . .
S10 = 1000001111 . . .
S11 = 0110100111 . . .
S12 = 0001010111 . . .
S13 = 1001111001 . . .
S14 = 0110000001 . . .
S15 = 0000110111 . . .
S16 = 0011011001 . . .

6 15

12 8 16

14 1

11

3 10 13

9

7 5

4

2

Figure 1: Example of a trie built from 16 randomly-
generated strings. All letters are generated indepen-
dently; each letter of each string is equally likely to be
“a” or “b”. A branch to the left (respectively, right)
at level j indicates that the jth letter of the inserted
string is an “a” (respectively, “b”). The 2-protected
nodes are shaded in light grey.

be the number of 2-protected nodes in the Poisson-
tree TNz

. Finally we define functions for the average,
second moment, and variance, all in the Poissonized
case:

g(z) := E(TNz ),

h(z) := E(T 2
Nz

),

v(z) := Var(TNz
).

These three functions are the only ones we will need.

2.1 A Model for Strings in Tries.

Binary tries (and, moreover, tries built over any al-
phabet) are defined using a recursive scheme of con-
struction. Consider a given set S of strings, from
which a trie will be built. Let S\a be the subset of
S consisting of strings from S that began with the
character “a”, with this leading “a” removed. For
instance, if abbbaab ∈ S, then bbbaab ∈ S\a. With
these definitions, we can now define a trie built on
the collection of strings S as

T (S) =


∅, if S = ∅;
Y, if S = {Y };
〈•, T (S\a), T (S\b)〉, otherwise.

The first case is an empty node (does not appear
in the trie). The second case is a leaf (i.e., a node
where a string is stored in the trie). The third case is
of fundamental importance to the construction, be-
cause it describes the splitting procedure: a binary
trie T (S) built from a nonempty set S consists of:

1. a root node •;

2. a (possibly empty) left subtree T (S\a) consist-
ing of all strings in S that start with the letter
a, with that initial a removed; and

3. a right subtree T (S\b) defined analogously.

Therefore, each string is inserted into the trie at the
location corresponding to the shortest unique prefix
of the string. With probability 1, this allows for any
finite number of strings to be placed at a finite level
in the trie. Figure 1 illustrates the procedure: string

3
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S3 shares the prefix 011 with two other Sj ’s, but the
prefix 0111 is unique to S3; thus, S3 is placed in the
trie at the leaf node corresponding to 0111, namely,
the shortest distinguishing (i.e., unique) prefix of S3.

The 2-protected nodes in Figure 1 are drawn
in light gray; they are the nodes that are nei-
ther leaves nor parents of leaves.

3 Results

Our main result is the following.

Theorem 1 Let Tn denote the number of 2-protected
nodes in a randomly generated binary trie on n leaves,
and let the quantity h := −p log p − q log q denote
the entropy of the source. Then the variance of Tn
satisfies

Var(Tn) = (c1 + c2 − c23)n

+ (δ1(log n)− 2c3δ2(log n)− (δ2(log n))2)n

+O(n1−ε)

where the constants c1, c2 and c3 are given by

c1 =
1

h

(
2p3q(2p2 − 2pq + 5p+ 3)

(p+ 1)3

+
2pq3(2q2 − 2pq + 5q + 3)

(q + 1)3

+
pq

2
− p2q2

4
− 2p

p+ 1
− 2q

q + 1

+
1

2
+ h− 2pq

[
1− p

(p+ 1)2
− q

(q + 1)2

])
,

c2 =
2

h

∑
k≥2

(−1)k
(pk + qk)2

1− pk − qk
(pq + 1− p2q2(k − 1)k),

c3 =
pq + 1

h
− 1,

and δ1, δ2 are distinct fluctuating functions of log n
of small (∼ 10−4) magnitude when log p

log q is rational,
and 0 otherwise.

Corollary 1 If Tn denotes the number of two pro-
tected nodes in a trie of n leaves generated from

a uniform source (i.e., a source for which p =
q = 1

2), the variance of Tn is asymptotically about
(n)(0.934438705 . . .), plus n times small fluctuations.

Note: We are especially intrigued by the constant
c2, which is defined by an alternating sum; in the
uniform case, we have

c2 =
2

ln 2

∞∑
k=2

(−1)k(k + 4)(k − 5)

22k+2(21−k − 1)
for p = q = 1

2

= 1.437275209 . . .

We find this sum very interesting. We are unaware
of its appearance elsewhere.

4 Sketch of Proofs

We prove our main result in three lemmas. The first
lemma gives us an expression for Var(Tn), while the
second and third are used to provide values that are
needed in the first lemma.

Lemma 1 Let Tn denote the number of 2-protected
nodes on a random trie with n leaves. Let g(z) =
E(TNz ) and v(z) = Var(TNz ) denote (respectively)
the expected value and variance of the number of 2-
protected nodes in a trie built from Nz leaves, where
Nz is Poisson with mean z. Then there exists ε > 0
such that

V ar(Tn) = v(n)− n(g′(n))2 +O(n1−ε).

Proof. This proof relies on a sharp form of General-
ized Depoissonization (see, e.g., Theorem 2 of [7] or
Theorem 10.13 of [11]). For our purposes the key re-
sult is that if f(z) is the Poisson generating function
of a sequence fn, then one has

fn = f(n)− n

2
f ′′(n) +O(nk−2),

provided that f(z) = O(zk). Gaither et al. [6] showed
that the Poissonization g(z) of E(Tn) is O(z), so
E(Tn) = g(n)− n

2 g
′′(n) +O(n−1).

From here the proof is essentially manipulative.
Solving for g(n) and squaring, we obtain

g(n)2 = E(Tn)2 + ng′′(n)E(Tn) +O(1).

4
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Since g(z)2 + v(z) = h(z), where h(z) = E(T 2
Nz

) de-
notes the second Poissonized moment, then if we add

v(n)− n

2

d2z

dz2
(
g(z)2 + v(z)

)∣∣∣∣
z=n

to both sides, we obtain

E(T 2
n) = E(Tn)2 + v(n)

+ ng′′(n)
(
E(Tn)− g(n)

)
− n(g′(n))2 +O(1)

= E(Tn)2 + v(n)− n(g′(n))2 +O(n1−ε).

Subtracting E(Tn)2 from both sides completes the
proof of the lemma. �

The remainder of our proof is devoted to the precise
estimation of the quantities v(n) and g′(n).

Lemma 2 Let v(z) = Var(TNz
). Then for some ε >

0 we have

v(z) = (c1 + c2)z + δ1(log z)z +O(z1−ε),

where the definitions of c1 and c2 are given in the
statement of Theorem 1, and where δ1(log z) is a fluc-
tuating function of small magnitude when log p

log q is ra-
tional, and 0 otherwise.

Proof. If we let XNz,w = 1 when the node (in the trie)
corresponding to w is 2-protected, and XNz,w = 0
otherwise, then we have TNz

=
∑
w∈A∗ XNz,w. So

we obtain

v(z) = Var(TNz )

= Cov
( ∑
w∈A∗

XNz,w,
∑
v∈A∗

XNz,v

)
=

∑
w,v∈A∗

Cov(XNz,w, XNz,v).

A crucial observation is that the 2-protectedness of
a word w is independent of that of v (and therefore
Cov(XNz,w, XNz,v) = 0) unless w is a prefix of v or
v is a prefix of w. There are five ways that this can
happen:

1. v = w;

2. v = wax for some x ∈ A∗;

3. v = wbx for some x ∈ A∗;

4. w = vax for some x ∈ A∗;

5. w = vbx for some x ∈ A∗.

In case 1, we have

Cov(XNz,w, XNz,w) = E(X2
Nz,w)− E(XNz,w)2

= fw(z)− fw(z)2,

where

fw(z) = 1− zpP (w)e−pP (w)z − zqP (w)e−qP (w)z

+ z2pqP (w)2e−P (w)z − e−P (w)z

is equal to the probability that w is 2-protected in a
trie with Nz leaves. (The logic behind this expression
is that w is 2-protected if and only if the following two
conditions are satisfied: w must appear as the prefix
of at least one string inserted in the trie, and (simul-
taneously) neither wa not wb appears as a prefix of
exactly one string inserted in the trie.)

For case 2, we have

Cov(XNz,w, XNz,wax) = E(XNz,wXNz,wax)

− E(XNz,w)E(XNz,wax).

To analyze E(XNz,wXNz,wax), note that if wax is 2-
protected, then XNz,w will be 2-protected if and only
if the prefix wb does not appear exactly once as a
prefix among strings inserted in the trie. Therefore

E(XNz,wXNz,wax) = (1− zqP (w)e−qP (w)z)fwax(z).

(It should be evident, at this point, why it is very
convenient to know the first letter following w when
w is a prefix of v.) We then have

Cov(XNz,w, , XNz,wax) = fw(z)fwax(z)

− (1− zqP (w)e−qP (w)z)fwax(z).

The covariances in cases 3–5 can be calculated in
analogous ways. We then have, by symmetry,

v(z) = v1(z) + 2v2,a(z) + 2v2,b(z),

5
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where

v1(z) :=
∑
w∈A∗

fw(z)− fw(z)2;

v2,a(z):=
∑

w,x∈A∗

fwax(z)
(
fw(z)− 1 + zqP (w)e−qP (w)z

)
;

v2,b(z):=
∑

w,x∈A∗

fwbx(z)
(
fw(z)− 1 + zpP (w)e−pP (w)z

)
.

We will want to take the Mellin transform of v(z),
for which we will require a Mellin strip. When
one expands fw(z) out as a Taylor series, the lead-
ing term proves to be quadratic; this shows that
each vj(z) = O(z2) as z → 0. To show that each
vj(z) = O(z) as z → ∞ is more tedious, but this
can be seen by first expanding the whole expression,
simplifying, and then using calculus to show that,
for every ε > 0, all remaining terms are uniformly
bounded by Cz1+εP (w)1+ε for some C. So 〈−2,−1〉
is a valid Mellin strip.

We first take the Mellin transform of v1(z) in this
strip, defined as v∗1(s) :=

∫∞
0
v1(z) zs−1 dz, and we

obtain

v∗1(s) = m(s)
[(

1− 2−s
)
Γ(s)

+
(
p−s + q−s − 2p(p+ 1)−s−1

− 2q(q + 1)−s−1
)
Γ(s+ 1)

−
(
2−s−2(p−s + q−s) + 3pq + 2−s−1

)
Γ(s+ 2)

+
(
2pq[p(p+ 1)−s−3 + q(q + 1)−s−3]

)
Γ(s+ 3)

+
(
− p2q22−s−4

)
Γ(s+ 4)

]
where

m(s) :=
∑
w∈A∗

P (w)−s =
1

1− p−s − q−s
.

We can now recover v1(z) via the Inverse Mellin
Transform

v1(z) =
1

2πi

∫ c+i∞

c−i∞
z−sv∗1(s).

The real value c can be chosen anywhere in funda-
mental strip 〈−1, 0〉. We take c = − 1

2 . Following
standard procedure, we then evaluate this integral by

“closing the box”: that is, we build a box-contour C
of four sides, the left of which, C1, runs from − 3

2−iM
to − 3

2 + iM and therefore can be extended to infinity
to yield our inverse-Mellin integral. The top and bot-
tom sides C2 and C4 run from − 3

2 +iM to −1+ε+iM
and −1 + ε− iM to − 3

2 − iM , respectively, for some
ε > 0. The right-hand side C3 ranges from−1+ε+iM
to −1 + ε− iM ; we will use it to bound our integral.

The integral

lim
M→∞

1

2πi

∫
C1

z−sv∗1(s) ds

is precisely our inverse-Mellin integral; the integrals
over C2 and C4 are O(e−M ) since the Gamma func-
tion decreases exponentially with |=(s)|, and the in-
tegral over C3 is O(z1−ε). And the value of the whole
integral around C is then simply the negative sum of
the residues contained in C. So

v1(z) = O(z1−ε)−
∑
sj∈K

Res
s=sj

v∗1(s)

where K is the set of poles of v∗1 that lie in the interior
of C.

The Γ functions appearing in v∗1(s) are analytic
everywhere within C except at s = −1. The func-
tion m(s) = 1

1−p−s−q−s will have a pole at s = −1,
and will also have infinitely many poles in the strip
〈−1,−1 + ε〉; however, by a result well-explained in
Flajolet, Roux, and Vallée’s recent survey [4], the to-
tal contribution of these poles will be O(z1−ε).

Finally, if log p
log q is rational, m(s) will have evenly-

spaced poles along the line <(s) = −1, which in total
will contribute an oscillating function of log z of small
magnitude. This function will be a sum of terms
of form αkΓ(−1 + 2π(k + a

log(p) )i), k ∈ N, where
log p
log q = a

b ∈ Q, and αk = O(1). The “smallness”
arises from the Gamma function’s exponential rate
of decay as its imaginary argument grows large in
absolute value. The curious reader is referred to [11]
for a more detailed treatment of this point.

6
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Letting h := −p log p − q log q denote the entropy
of the source, we have

Res
s=−1

v∗1(s) = − 1

h

(
1

2
− 2 log 2 + h

+ 2p log(p+ 1) + 2q log(q + 1)

− 2pq

[
1− p

(p+ 1)2
− q

(q + 1)2

]
− 1

4
p2q2

)
.

In the case where log p
log q = r

t is rational, we will also

have residues at every zk = 2πikr
log p . The net result is

a fluctuating function δ̄1 of small magnitude:

δ̄1(log z) =
∑

k∈Z,k 6=0

Res
s=zk

z−sv∗1(s).

Now we want to take the Mellin transform of v2(z).
Unfortunately, v2(z) is complicated in its given form.
Some shifting of the words will greatly simplify the
expression. For example, we use∑
w∈A∗

(z2p2P (w)2e−2pP (w)z + z2q2P (w)2e−2qP (w)z)

=
∑
|w|≥1

z2P (w)2e−2P (w)z.

In this manner∑
w,x∈A∗

(zpP (w)e−pP (w)zfwax(z)

+ zqP (w)e−qP (w)zfwbx(z))

is seen to be equal to∑
|w|≥1

∑
x∈A∗

zP (w)e−P (w)zfwx(z).

Similarly, we can simplify the following:∑
w,x∈A∗

(1− z2pqP (w)2)e−P (w)z(fwax(z) + fwbx(z))

=
∑
w∈A∗

∑
|x|≥1

(1− z2pqP (w)2)e−P (w)zfwx(z).

We can then write

v2(z)=
∑

|w|,|x|≥1

(1 + zP (w)− z2pqP (w)2)e−P (w)zfwx(z)

+
∑
|x|≥1

(1− z2pq)e−zfx(z) +
∑
|w|≥1

zP (w)e−P (w)zfw(z).

Next we convert the fs in the first and second sums
into Taylor series and (at last) take Mellin trans-
forms. Dominated convergence allows us to carry the
transform inside the sum. Letting r(s) = (p−s+q−s),
we obtain

v∗2(s) = r(s)m(s)
∑
|x|≥1

∑
k≥2

(−P (x))k

k!

×
(
pq(k)(k − 1) + k(pk + qk)− 1

)
×
(
Γ(s+ k) + Γ(s+ k + 1)

− pqΓ(s+ k + 2)
)

+
(
1− s(s+ 1)pq

) ∑
|x|≥1

∑
k≥2

(−P (x))k

k!

× (pq(k)(k − 1) + k(pk + qk)− 1)Γ(s+ k)

+m(s)r(s)
(
1− 2−s−1

− (s+ 1)
[
(p+ 1)−s−2 + (q + 1)−s−2

]
+ (s+ 1)(s+ 2)2−s−3pq

)
Γ(s+ 1).

By shifting, we can evaluate most of this sum explic-
itly. In the end we find that

Res
s=−1

v∗2(s) = − 1

h

(
p3q(2p2 − 2pq + 5p+ 3)

(p+ 1)3

+
pq3(2q2 − 2pq + 5q + 3)

(q + 1)3

+
pq

4
− p

p+ 1
− q

q + 1

+ log 2− p log(p+ 1)− q log(q + 1)

)
− 1

h

∑
k≥2

(−1)k
(pk + qk)2

1− pk − qk

× (pq + 1− p2q2(k − 1)k).

When log p
log q is rational, we also have periodic residues

along <(s) = −1 which collectively form a small-

magnitude function ¯̄δ1(log z); since this function is
generated by the same poles of the same function
as δ̄1(log z), we can combine the two into a single
function δ1(log z).
Combining all the residues of v∗(s) = v∗1(s) + 2v∗2(s),
we find that

v(z) =
(
c1 + c2

)
z + δ1(z) +O(z−ε),

7

49 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

3/
14

 to
 9

8.
22

3.
65

.8
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



where c1 and c2 are given in the statement of Theo-
rem 1. This completes the proof of Lemma 2. �

Now we derive an estimate for g′(z), and thus prove
our main result.

Lemma 3 Let g(z) = E(TNz
). Then there is ε > 0

such that g′(z) = c3 + δ2(log z) +O(z−ε), where c3 =
pq+1
h −1, and δ2 is a periodic function of log z of small

magnitude when log p
log q is rational, and 0 otherwise.

Proof. This proof is basically a much easier version
of the proof of Lemma 2. We have already noted that
the first Taylor-term of g(z) is quadratic; it follows
from this that g′(z) = O(z) as z → 0. And we deduce
that g′(z) = O(1) as z → ∞ by the same calculus-
argument we used in Lemma 2 to show that v(z) was
O(z).

We have

g(z) =
∑
w∈A∗

(
1− zpP (w)e−pP (w)z − zqP (w)e−qP (w)z

+ z2pqP (w)2e−P (w)z − e−P (w)z
)
,

so

g′(z) =
∑
w∈A∗

(
P (w)

(
e−P (w)z − pe−pP (w)z − qe−qP (w)z

)
+ zP (w)2

(
p2e−pP (w)z + q2e−qP (w)z

+ 2pqe−P (w)z
)

− z2P (w)3pqe−P (w)z
)

The Mellin transform of g′(z) is then

dg

dz

∗
(s) =

∑
w∈A∗

P (w)−s+1
[(

1− p−s+1 − q−s+1
)
Γ(s)

+
(
p−s+1 + q−s+1 + 2pq

)
Γ(s+ 1)− pqΓ(s+ 2)

]
=

1

1− p−s+1 − q−s+1

[(
1− p−s+1 − q−s+1

)
Γ(s)

+
(
p−s+1 + q−s+1 + 2pq

)
Γ(s+ 1)− pqΓ(s+ 2)

]
.

From here we retrieve g′(z) via the inverse Mellin

g′(z) =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

z−s
dg

dz

∗
(s) ds,

which we calculate by closing a box whose right-hand
side lies on the line <(s) = ε for some small ε. Cal-
culating the residues, we find

Res
s=0

dg

dz

∗
(s) = −p log p+ q log q + pq + 1

h

= 1− pq + 1

h
;

and if log p
log q is rational, we sum up the residues along

the imaginary axis and obtain

δ2(log z) =
∑

k∈Z,k 6=1

Res
z=zk

dg

dz

∗
(s),

a periodic function of log z of small magnitude. If
log p
log q is irrational, then we set δ2 = 0.

We then have

g′(z) =
pq + 1

h
− 1 + δ2(log z) +O(z−ε),

and squaring g′(z) yields the desired result. �

5 Open Questions

The present inquiry suggests four interesting ques-
tions for further investigation.

1. The first order asymptotics of the variance and
expectation of the number of 2-protected nodes
Tn in a random trie are now known. In a forth-
coming report, we will analyze the limiting dis-
tribution of Tn. We believe that
Tn−ETn√
Var(Tn)

D−→ N (0, 1).

2. What can be established about the variance of
Tn when Tn is some species of tree other than
a trie? Poissonization lends itself naturally to
the analysis of tries. The analysis of the vari-
ance of Tn in other tree structures might lead to
interesting results.

3. The sum defining the constant

c2 :=
1

2h

∑
k≥2

(−1)k
(pk + qk)2

1− pk − qk
(pq+1−p2q2(k−1)k)
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is not quite like any that we have ever seen be-
fore. Are there connections of this constant with
the analysis of other trie parameters? We would
be pleased to hear about any such connections.
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